Übungen zur Quantenmechanik I

Prof. J. S. Briggs

Blatt 8 SoSe 2005

Aufgabe 1: Harmonischer Oszillator einmal anders ...

Angenommen Sie kennen nicht die typischen Verfahren zur Behandlung des harmonischen Oszillators mit dem Potential $V_{HO}(x) = \frac{m}{2}\omega^2 x^2$, dann könnten Sie das Problem auf folgenden Weise untersuchen:

Verwenden Sie z.B. den Potentialtopf der Breite a mit unendlich hohen Wänden und dem Energie-Spektrum $E_n = \frac{\hbar^2 \pi^2}{2ma^2} n^2$ als ungestörtes, bereits gelöstes Problem mit dem Hamiltonoperator H_0 .

- a) Wie groß ist der maximale Wert von a, damit bei gegebenem n $(E_n V_{HO}(x)) \ge 0$ innerhalb des Potentialtopfes ist?
- b) Wie groß ist der Energieeigenwert E_n ? Vergleichen Sie Ihr Ergebnis mit dem bekannten Eigenwert des harmonischen Oszillators.
- c) Der in b) gefundene Eigenwert E_n soll duch einen Störterm W(x) verbessert werden. Der Störterm habe die Form

$$W(x) \equiv \begin{cases} V_{HO}(x) & \text{falls} & -a/2 < x < a/2 \\ 0 & \text{sonst} \end{cases}$$

Bestimmen Sie die erste Korrektur $E_n^{(1)}$ des Energieeigenwertes bei dieser Störung.

d) Berechnen Sie die erste Korrektur des Grundzustandes.

Aufgabe 2: δ -Störung

Der Potentialtopf der Breite a mit unendlich hohen Wänden soll durch

$$W(x) = \lambda \ \delta(x_0)$$

gestört werden, wobei $-a/2 < x_0 < a/2$ und $\lambda \in \mathbb{R}$ mit $\lambda \ll 1$ ist.

- a) Berechnen Sie die erste Korrektur $E_n^{(1)}$ des Energieeigenwertes in Abhängigkeit von x_0 und n.
- b) Berechnen Sie die erste Korrektur zum Grundzustand für $x_0 = 0$.
- c) Berechnen Sie die zweite Korrektur $E_n^{(2)}$ des Energieeigenwertes für $x_0 = 0$.