Übungen zur Quantenmechanik I

Prof. J. S. Briggs

Blatt 5 SoSe 2005

Aufgabe 1: Morse-Oszillator

Die Schwingung eines zweiatomigen Moleküls mit der reduzierten Masse m kann man näherungsweise mit dem Morse-Potential

$$V(r) = D(e^{-2\alpha x} - 2e^{-\alpha x})$$

mit $x=(r-r_0)/r_0$ beschreiben. r_0 ist der Gleichgewichtsabstand des Moleküls.

- a) Skizzieren Sie das Potential.
- b) Wie hängt für kleine Oszillationen um r_0 die Eigenfrequenz der Schwingung von den Parametern des Potentials ab? Geben Sie das Energiespektrum an.

Aufgabe 2: Harmonischer Oszillator im homogenen elektrischen Feld

Ein Teilchen der Ladung q bewegt sich eindimensional unter dem Einfluss eines harmonischen Potentials $V_{\text{osc}}(x) = \frac{1}{2}m\omega^2x^2$ entlang der x-Achse. Zusätzlich wirkt ein konstantes elektrisches Feld der Feldstärke F auf dieses Teilchen.

- a) Wie lautet der Hamiltonoperator dieses Systems?
- b) Bestimmen Sie die Eigenenergien und Eigenfunktionen des Systems. Hinweis: Durch quadratische Ergänzung kann der Hamiltonoperator auf den eines verschobenen harmonischen Oszillators gebracht werden.
- c) Bestimmen Sie den Erwartungswert $\langle d \rangle$ des Dipoloperators in einem Energieeigenzustand. Der Dipoloperator $d=q\,x$ ist definiert als Produkt aus der Ladung q mit dem Ortsoperator x.
- d) Das System befinde sich im Grundzustand und das elektrische Feld werde plötzlich abgeschaltet. Wie groß ist die Wahrscheinlichkeit, nach dem Abschalten die Energie $E_n = \hbar\omega(n+1/2)$ zu messen?

Hinweis: Verwenden Sie dazu die Beziehung für die erzeugende Funktion der Hermite-Polynome $e^{-\lambda^2+2\lambda z} = \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} H_n(z)$.

Polynome $e^{-\lambda^2+2\lambda z} = \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} H_n(z)$. Antwort: $P_n = e^{-\xi} \xi^n / n!$ mit $2\xi = \frac{m\omega}{\hbar} (\frac{qE}{m\omega^2})^2$.

Aufgabe 3: Parität in einem Modell der Molekülbindung

Das Doppeldeltapotential $V(x) = -\beta[\delta(x + \frac{a}{2}) + \delta(x - \frac{a}{2})]$ mit $\beta > 0$ kann als einfachstes Model für das H_2^+ -Ion betrachtet werden, an dem sich einige Grundzüge der Molekülbindung studieren lassen. Dabei bewegt sich das Elektron der Masse m im Potential V(x) und der (fixierte) Abstand zwischen den Kernen beträgt a.

- a) Zeigen Sie: aus der Invarianz des Hamiltonoperators gegenüber der Paritätsoperation $x \to -x$ (d.h. H(-x) = H(x)) folgt: die Eigenfunktionen von H(x) sind entweder symmetrisch oder antisymmetrisch bezüglich Ortsspiegelung, d.h. $\psi_{\rm S}(x) = \psi_{\rm S}(-x)$ oder $\psi_{\rm A}(x) = -\psi_{\rm A}(-x)$.
- b) Schreiben Sie einen Ansatz für die Lösung der Schrödingergleichung in den Gebieten $x < -\frac{a}{2}$, $|x| < \frac{a}{2}$ und $x > \frac{a}{2}$ für die symmetrische Lösung $\psi_{\rm S}(x)$ und die antisymmetrische Lösung $\psi_{\rm A}(x)$ an.
- c) Lösen Sie die Gleichungen für die Amplituden der geraden Eigenfunktion, indem sie (i) die Stetigkeitsbedingung für die Wellenfunktion und (ii) die Sprungbedingung für die 1. Ableitung der Wellenfunktion bei $x = \pm a$ beachten (letztere wurde auf Blatt 4, Aufgabe 2 abgeleitet).
- d) Führen Sie die entsprechende Rechnung wie in c) für die ungerade Eigenfunktion durch. Für welchen Wert von a existiert keine ungerade Lösung mehr?
- e) Diskutieren Sie die Energieeigenwerte $E_{\rm S}$ und $E_{\rm A}$ als Funktion des Kernabstands a und interpretieren Sie das Ergebnis im Sinne der Molekülbindung.